Заземление электроустановок: правила и требования
Заземление – соединение корпуса электроустановки с заземляющим контуром, с целью предотвращения поражения током работающих и находящихся в непосредственной близости людей. Является обязательным элементом комплекса мер по обеспечению безопасности. Существуют различные виды электроустановок, и каждый требует особого подхода к организации заземления, поэтому важно уделить внимание технической стороне вопроса.
Классификация заземляющих устройств
Система заземления электроустановок – комплекс, состоящий из заземляющего контура и проводников, соединяющих его с корпусами оборудования для обеспечения стекания в землю избыточного тока, появившегося в результате попадания фазы на корпус. Действующая в России классификация устройств заземления (далее УЗ) подразумевает градацию по следующим признакам:
- Виду нейтрали. По наличию соединения с заземляющим устройством:
- заземленная;
- изолированная.
- Способу прокладывания от понижающей подстанции до электроустановки.
- Способ подключения нагрузки к нейтрали.
Организация системы заземления регулируется правилами устройства электроустановок (ПУЭ). Документ регламентирует порядок и признаки классификации заземляющих систем. Для обозначения маркировки используются буквы английского алфавита:
T – заземление;
N – нейтраль;
I – изолированное;
C – общая;
S – раздельная.
Такой вид маркировки позволяет определить используемый способ защиты генератора тока и предпочтительные схемы заземления электроустановок на стороне потребителя.
При монтаже линий электроснабжения общепринятыми для России считаются три системы заземления:
- TN-C – обозначает, что нулевой рабочий и защитный проводники объединены в общую шину на всем протяжении трассы.
- TN-S – нулевой рабочий и защитный проводники прокладываются раздельно.
- TN-C-S – нулевой рабочий и защитный проводники на части трассы объединены, а на остальной прокладываются раздельно.
Реже встречаются следующие системы:
- TT – нулевой рабочий и защитный проводники заземляются раздельно. Чаще всего этот способ используют в случае неудовлетворительного состояния питающей воздушной ЛЭП или для предотвращения поражения людей через токопроводящие поверхности временных сооружений.
- IT – в этой схеме нейтраль изолируется от земли или заземляется через специальное оборудование. Такой вариант чаще всего используют, если необходимо обеспечить высокий уровень защиты оборудования. Поскольку при таком варианте подключения риск искрообразования минимален.
Технические требования к организации заземления электроустановок
УЗ используют для защиты людей и оборудования от разрушительного действия электрического тока. Безопасность обеспечивается путем соединения защищаемых корпусов электроустановок с землей. Работы по организации заземляющих сетей регламентируются положениями ГОСТ 12.1.030-81, согласно которым защитное заземление электроустановки следует выполнять при следующих параметрах:
- при значениях номинального напряжения 380 B и более переменного тока и более 440 B и более постоянного тока – при любых значениях;
- при значениях номинального напряжения 42-380 B переменного тока 110-440 B. Для работ связанных с повышенной опасностью.
Правильно организованная система заземления электроустановок способна нейтрализовать избыточный потенциал любой мощности и защитить людей, оборудование и здания от воздействия электрического тока будь то скачки, вызванные включением или отключением силового оборудования или грозовое воздействие.
Принцип работы основан на разнице сопротивлений человеческого тела и УЗ. Избыточный потенциал отводится в направлении меньшего показателя, т. е. в сторону защитного контура.
Выбор естественных заземлителей
Согласно правилам устройства электроустановок, их корпуса должны быть подключены к искусственным или естественным заземлителям. В качестве естественных используют следующие металлические объекты:
- каркасы подземных металлоконструкций, имеющие непосредственный контакт с грунтом;
- защитные кожухи кабелей, проложенных под землей;
- металлические трубы, за исключением газо- и нефтепроводов;
- железнодорожные рельсы.
Контакт объекта с естественным заземлителем должен осуществляться минимум в двух местах. Преимущества этого метода в простоте, эффективности и сокращении затрат на организацию системы электробезопасности.
Нельзя выбирать в качестве естественных заземлителей следующие объекты:
- трубопроводы горючих и взрывчатых газов и жидкостей;
- трубы, покрытые антикоррозийной изоляцией;
- канализационные трубопроводы;
- трубы централизованного отопления.
Сопротивление стеканию тока
Заземление работает по следующему принципу: ток, стекающий в землю через место замыкания, проходит вначале на корпус электроустановки и с него через УЗ в грунт. Очевидно, что при организации сетей заземления до 1000 Вольт, важно создать цепочку, обеспечивающую стекание избыточного заряда в землю.
Значения сопротивления заземления для сетей различного назначения:
Назначение сети |
Максимальное значение сопротивления, Ом |
Частные дома 220, 380 Вольт |
30 |
Промышленное оборудование |
4 |
Источник тока при напряжении 660, 380 и 220 Вольт |
2, 4, 8 |
Частный дом при подключении газопровода |
10 |
Устройства защиты линий связи |
2 (реже 4) |
Телекоммуникационное оборудование |
2 или 4 |
Чтобы получить показатели сопротивления, установленные нормативами, следует придерживаться типовых процедур:
- Увеличить площадь соприкосновения деталей заземляющего устройства с грунтом.
- Обеспечить качественный контакт между элементами устройства и соединительными шинами.
- Усилить проводимости почвы увлажнением или повышением ее солености.
Для контроля за соответствием сопротивления предписанным нормам следует проверять его уровень не реже одного раза в шесть лет.
- Учитель: Андрей Васильевич Шкарин